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Welcome: HPC Systems and Power Management

• Compute Nodes, I/O Nodes, Network

• Static and Dynamic Power Management 

• DOE’s ongoing project: ECP Argo 
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Agenda

Topic Time Slot Presenters
PowerStack Introduction and ECP Challenges 2:30 – 2:50 Tapasya Patki
Workflows and site-level power management 2:50 – 3:10 Tapasya Patki
Power Control Knobs on Intel and IBM systems 3:10 – 3:30 Tapasya Patki
BREAK 3:30 – 4:00

Variorum 4:00 – 4:30 Stephanie Brink

Hands-on Tutorial on GEOPM 4:30 – 4:45 Aniruddha Marathe
GEOPM Agent/Platform API 4:45 – 5:15 Aniruddha Marathe
LLNL’s advanced plugins (DVFS-based IBM plugin, 
configuration selection plugin)

5:15 – 5:50 Aniruddha Marathe

Wrap up 5:50 – 6:00 All
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PowerStack: System-wide, dynamic power management

https://hpcpowerstack.github.io/

https://hpcpowerstack.github.io/
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• Current industry collaborators: Intel, IBM, AMD, 
ARM, Cray, HPE, Fujitsu, Altair, ATOS/Bull

• Multiple academic and research collaborators 
across Europe, Asia, US

• Three working groups established 

• Dynamic power management at all levels, 
along with prioritization of the critical path, 
application performance and throughput

• One of the prototypes will be developed as part 
of ECP using SLURM, GEOPM, libmsr/msr-
safe (close collaboration with Intel)

PowerStack: Stakeholders

EEHPC-WG’s insight into sites investing in 
Energy- and Power-aware Job Scheduling 
and Resource Management (EPA-JSRM)
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PowerStack: Layers

• Site-level 
• Policies, objectives

• System-level
• Scheduling, runtimes, application-

awareness

• Platform-level
• Hardware interaction, PowerAPI

• Idle and Emergency Management
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ECP Argo uses SLURM/Flux, GEOPM and variorum as vehicles 
for power management at exascale

7

ECP Argo:
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Unused Power: 40% 

Total Power Consumption of BG/Q Vulcan Supercomputer
Feb 2013 to Aug 2018
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Why is it so?

• Applications have different 
memory, communication, 
I/O requirements and phase 
behaviors

• Applications don’t utilize all 
of the allocated power, thus 
allocating more power 
doesn’t always improve 
performance 

Power and Runtime
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Benchmark runs use 8 two socket nodes, Limit per socket

Graph Source: Daniel Ellsworth, University of Oregon

Intel Sandy Bridge, 8 nodes, (2 sockets, 8 cores)

Min: 51 W, Max: 115 W
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Automatic configuration selection is crucial for performance 
and energy efficiency

2x 
speedup

Lulesh
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Performance variability can result from processor manufacturing 
process

• Manufacturing variability in hardware continues to increase, and will worsen 
with heterogeneous systems

• 4x difference between two generations of Intel processors, needs advanced 
runtime options for mitigation
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Demo of Application Performance and Processor Variability
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Workflows on high-end HPC systems are undergoing 
significant changes.

• Cancer Moonshot Pilot2 – co-schedule many 
elements and ML continuously schedules, 
de-schedules and executes MD jobs.

• In-situ analytics modules 

• ~7,500 jobs simultaneously running

Traditional pillar 
high-performance computing

New pillar
Machine learning to compare

simulation and experiment

HYDRA simulation NIF X-ray image

Complete 
simulation and 
experiment data

Improved prediction

Deep 
neural 
network

• Machine Learning Strategic Initiative (MLSI) – 1 billion short-
running jobs!

• Similar needs for co-scheduling heterogenous components
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Key challenges in emerging workflow scheduling include…

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

New pillar
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Flux provides a new scheduling model to meet these 
challenges – targeted on El Capitan

Our “Fully Hierarchical Scheduling” is designed to cope with many
emerging workload challenges.
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Flux is specifically designed to embody our fully hierarchical 
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

Scheduler Parallelism

Scheduler Specialization

Rich API set

Consistent API set

Flux framework

Global Sched 
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The changes in resource types are equally challenging.

§ Problems are not just confined to the 
workload/workflow challenge.

§ Resource types and their relationships 
are also becoming increasingly complex.

§ Much beyond compute nodes and 
cores...
— GPGPUs
— Burst buffers
— I/O and network bandwidth
— Network locality
— Power

PFS BW Capacity
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The traditional resource data models are largely 
ineffective to cope with the resource challenge.

§ Designed when the systems are much simpler
— Node-centric models
— Bitmaps to represent a set of compute nodes

§ HPC has become far more complex 
— Evolutionary approach to cope with the increased complexity
— E.g., add auxiliary data structures on top of the node-centric data model

§ Can be quickly unwieldy
— Every new resource type requires new a user-defined type
— A new relationship requires a complex set of pointers cross-referencing different types.
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Flux uses a graph-based resource data model to 
represent schedulable resources and their relationships.

§ A graph consists of a set of vertices and edges
— Vertex: a resource
— Edge: a relationship between two resources

Containment subsystem Network connectivity subsystem
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Our graph-based resource data model reduces the 
complexity of our scheduler.

§ Highly composable to support a graph with arbitrary 
complexity
— Simply add new vertices and connectivity to compose

§ The scheduler remains to be a highly generic graph 
code.
— No code change is required on new resource types and 

relationships.
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Flux architecture embodies our graph matching scheme 
with good separation of concerns and extensibility.
§ Allow our resource module to populate and 

maintain the total graph of the instance.
— Graph resource data store

§ On receiving each job-spec object:
— Start to traverse the graph with a known visit 

type (currently DFV and DFU).
— On each visit event (e.g., post-order visit)

• a policy match callback is invoked to score the 
visiting vertex

• high- or low-id first, locality-aware, and 
performance variation-aware policies

§ Best matching resources are selected at the 
end of the traversal.
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Statically determining node performance classes:
2469 nodes of Quartz

2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n ) + tLULESHi

median(tLULESH1:n )

2 (2)

tnormj
=

tcombinedj
≠ min(tcombinedj

)
max(tcombinedj

) ≠ min(tcombinedj
) (3)

p =

Y
____]

____[

1, if 0 Æ tnormi
Æ 0.10

2, if 0.10 < tnormi
Æ 0.25

3, if 0.25 < tnormi
Æ 0.40

4, if 0.40 < tnormi
Æ 0.60

5, if 0.60 < tnormi
Æ 1.0

(4)
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technology [17], [18]. Figure 5(a) shows the same data in a
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nodes per rack, with a total of 2604 nodes. As explained in
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• allocated(a,j) returns true if node a has been allocated to job j

• Pj is the set of performance classes of the nodes allocated to job j

• Figure of merit, fomj, is a measure of how widely the job is spread across different 
performance classes 

• For a job trace, we will look for number of jobs with low figure of merit
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Variation-aware scheduling results in 2.4x reduction in rank-to-
rank variation in applications with Flux 

TABLE I: Comparison of the three policies in terms of rank-to-rank variation. The table shows the number of jobs
with a certain value of figure of merit. Having many jobs with a zero or one figure of merit value is considered good.

Policy fom = 0 fom = 1 fom = 2 fom = 3 fom = 4
HighestID 66 54 47 27 6
LowestID 79 34 43 33 11

Variation-aware 184 7 8 1 0

0 1 2 3 4

Difference in Perf Class

Fr
eq

ue
nc

y 
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Baseline: Highest ID First

0 1 2 3 4

Difference in Perf Class

Fr
eq

ue
nc

y 
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Baseline: Lowest ID First

0 1 2 3

Difference in Perf Class

Fr
eq

ue
nc

y 
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Variation Aware: 
Most Efficient Node First

Fig. 8: Results of the variation-aware policy depicting significant reduction in performance variation
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• HPC systems are becoming extremely heterogenous (Sierra, Summit…)
• Increased concurrency, multiple per-node GPUs, burst buffers, etc. 
• Maintaining high utilization of resources is challenging
• Efficient design points are harder to obtain: e.g. power constraints, network/IO bandwidth…
• How do we measure efficiency in heterogeneous environments when procuring future 

systems? 

• Modern scientific workflows are complex
• Multiple binaries for different devices and tasks
• Both serial and parallel components: MPI, CUDA, OpenMP
• Combinations of compilers and workflow management tools
• Co-scheduled dependencies 

Performance analysis of modern workflows is critical to the 
procurement process of next-gen systems

Scalable performance tools 
don’t exist for end-to-end analysis of workflows!
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Multiscale Machine-Learned Modeling Infrastructure (MuMMI) 
is designed to understand a cancer-signaling mechanism

§ Mutated RAS protein is implicated in a third of all human cancers

§ Understanding the role of RAS requires exploration at multiple length- and time-
scales
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Multiscale Machine-Learned Modeling Infrastructure (MuMMI) 
is designed to leverage massive heterogenous supercomputers

CG analysis
CG runs

CG setupDDFT

Flux

MOOSE FluxddcMD GROMACS

Micro scaleMacro scale

GPFS

Workflow
M

D

Maestro

ML

Type of code Programming 
language

# of concurrent 
executions

Resources per 
execution

Macro Scale (continuum) C++ (with MPI) 1 24 CPU cores
Micro Scale (CG molecular 
dynamics)

C++ (with CUDA) O(10,000) 1 CPU + 1 CPU core

CG setup Python O(10,000) 20 CPU cores
CG analysis (in situ) Python O(10,000) 3 CPU cores
Workflow and ML Python 1 1 computational node
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§ Pilot2 Multiscale Machine-Learned Modeling Infrastructure (MuMMI)
— Significant science advancements in cancer biology
— Significant computing advancement with co-scheduled GPU components
— Scales to massive supercomputers such as Sierra and Summit

§ GPU Power and Performance analysis:
— How power efficient are GPU workflow components?
— How do GPU power caps and frequency caps impact performance?
— What tools can be used at scale and across HPC systems/architectures?

First step in power analysis of workflows: 
MuMMI workflow and GPU’s 
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Our HPC environment for MuMMI analysis

§ LLNL’s Lassen Cluster (mini-Sierra)

§ IBM Power 9 Architecture  

§ 795 nodes consisting of:
— IBM Power9, 40 cores per node
— 4 Nvidia Volta Tesla V100 (Volta) GPUs
— 256 GB of DDR4 main memory

§ LSF is the main job scheduler 
— Flux and Maestro are two other scheduling 

components used for workflows

§ Listed at 10 on the top 500 



LLNL-PRES-804125
30

Power and frequency capping tools

• We did not have permissions to limit entire node power on Power9
• Future research will enforce limits on Power9 CPUs and GPUs

• Nvidia provides tool for GPUs: nvidia-smi
• Nvidia-smi –ac :  set frequency caps

• An upper limit that the frequency cannot exceed
• Nvidia-smi –pl : sets power caps

• An upper limit that power draw from the GPU cannot exceed



LLNL-PRES-804125
31

Power management and variation in workflows: data collection 
workflow 

40 minute (non-terminal) 
run of ddcMD with either a 

power or frequency cap 
set. 

BSUB script to Lassen: 
allocate 2 processors and 1 

GPU per run, set power 
and frequency cap with 

nvidia-smi 

using nvidia-smi, poll 
current GPU 

frequency or power 
draw every 10 

seconds with python 
script 

collect profiles and 
calculate average power 
draw or average running 

frequency of GPU

set job parameters to 
match how ddcMD would 

run within the MuMMI
workflow
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General data numbers we collected

§ 5353 ddcmd profiles were collected across two experiments

§ Experimental control variables: power or frequency limitation 

Power Limit Testing Frequency Limit Testing

4600 profiles generated with 
power caps

753 profiles were generated with 
frequency caps 

Across 30 different power caps Across 17 different profiles

From 105W to 300W From 877 MHz to 1530 MHz
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Power Capping Data 

Controlled Variable 

Measured 
Value

• Higher is better 
• Less variation is better
• 4600 profiles
• 200-500 profiles per power 

cap
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Measured 
Value

Controlled Variable 

• Lower is better 
• Less variation is better
• 753 profiles
• 30-100 profiles per power cap
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Conclusions for the MuMMI workflow can apply across the 
board: more runtime analysis is necessary

• 120W savings in power without slowdown in performance per GPU

• Cluster wide savings of 382kW
• 254.6 kWh energy savings
• $43k in savings per day @ 7c per kWh

• Limiting power from 300W to 105W
• Measured slowdown of 17% In ddcMD performance

• GPU frequency does not equate to general performance of workflows

• Frequency capping proved to be an unreliable way of improving efficiency 
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So, how do we even manage power? (measurement vs control)

Two primary mechanisms in hardware for control:
• Dynamic voltage and frequency scaling 
• Power capping, such as RAPL (Intel) or OPAL (IBM)

• Automatic tuning through Intel Turbo Boost or IBM UltraTurbo

• ACPI defines P-states, which are voltage/frequency pairs
• DVFS: cpufreq, ‘userspace’ governor
• RAPL: 

• Low-level register programming, supported with msr kernel module along with 
msr-tools

• LLNL’s msr-safe and variorum provide safe and clean access from user space 
across architectures

• OPAL:
• Firmware layer providing in band monitoring with sensors and out of band power 

capping
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Introduction to Intel’s RAPL

• Intel provides programmable, machine-specific registers for power, energy and 
thermal management (power capping)

• MSR Domains for server architectures:
• Package – represents processor cores, caches, and other things on the 

socket
• DRAM – represents memory components
• Other uncore registers also exist

Intel SDM: Vol 3, Chapter 14.9, https://software.intel.com/en-us/articles/intel-sdm

https://software.intel.com/en-us/articles/intel-sdm
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Deep dive into the MSR_PKG_POWER_LIMIT, (0x610h,rw)

Vol. 3B 14-33

POWER AND THERMAL MANAGEMENT

The presence of the optional MSR interfaces (the three right-most columns of Table 14-4) may be model-specific. 
See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 4 for details.

14.9.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:

• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes 
associated with each limit,

• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,

• MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT. 
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides 
independent clamping control that would permit the processor cores to go below OS-requested state to meet the 
power limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set, 
the power limit settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-32) are:

• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-
sponding to time window # 1. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time 
window specified by bits 23:17.

• Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1 

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 

Here “Y” is the unsigned integer value represented. by bits 21:17, “Z” is an unsigned integer represented by 
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

PP1 MSR_PP1_POWER_
LIMIT

MSR_PP1_ENERGY_STA
TUS

MSR_PP1_POLICY RESERVED RESERVED

Figure 14-32.  MSR_PKG_POWER_LIMIT Register

Table 14-4.  RAPL MSR Interfaces and RAPL Domains

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C Pkg Power Limit #2

1617

K

Time window 
Power Limit #2

Time window 
Power Limit #1

• Pkg Power Limit#1, bits 14:0, sets average power limit corresponding for window 1, unit 0.125 W
• Enable Limit#1: bit 15, 0 = disabled
• Pkg Clamping Limit#1, bit 16, allow going below OS requested P/T state
• Time Window Limit#1, bits 23:17, minimum is typically 1 millisec
• Pkg Limit #2 is typically not used
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Demo of msr-tools and introduction to msr-safe
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Power9 OCCs have a 
Primary-Secondary 
Design

• OCC collects thermal data 
every 250us

• Power knobs are exposed 
with the Open Power 
Abstraction Layer (OPAL)

• When power button is 
pressed, BMC selects 
master chip and releases 
SBEs, OPAL firmware is 
loaded

3030

System view with BMC

Courtesy: 
Todd Rosedahl, IBM
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Capping Node and GPU power

GPU

GPU Power 
Cap

Current GPU 
Power 

Consumption

Current CPU 
Power 

Consumption

CPU

GPU

CPU

System Normal Power Capped

GPU

CPU

Re-balanced
Based on “Power 
Shifting Ratio”

CPU/GPU Power Shifting – Power Shifting Ratio

System power limit reached
OCC lowers frequency/power within 1ms
OCC calculates power required to restore full frequency
OCC sends new GPU power limit based on “power shifting ratio”

3050 W

500 W • Power-shifting ratio determines 
distribution between CPU and GPU

• Per-socket cap and memory cap cannot 
be specified, master OCC has control
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OPAL interfaces for in-band sensors and power capping

Requires OPAL firmware v6.0.18 – includes fix for a firmware bug we found based 
on soft power cap

Read-only access:
• /sys/firmware/opal/exports/occ_inband_sensors

• Over 336 sensors reported on alehouse 
• Including power, temperature, frequencies for CPU, Memory, GPU (1ms 

granularity)

Read/write acces:
• /sys/firmware/opal/powercap/system-powercap/powercap-current
• /sys/firmware/opal/psr/cpu_to_gpu_* (per socket)





LLNL-PRES-804125
45

Agenda

Topic Time Slot Presenters
PowerStack Introduction and ECP Challenges 2:30 – 2:50 Tapasya Patki
Workflows and site-level power management 2:50 – 3:10 Tapasya Patki

Power Control Knobs on Intel and IBM systems 3:10 – 3:30 Tapasya Patki

BREAK 3:30 – 4:00

Variorum 4:00 – 4:30 Stephanie Brink

Hands-on Tutorial on GEOPM 4:30 – 4:45 Aniruddha Marathe
GEOPM Agent/Platform API 4:45 – 5:15 Aniruddha Marathe
LLNL’s advanced plugins (DVFS-based IBM plugin, 
configuration selection plugin)

5:15 – 5:50 Aniruddha Marathe

Wrap up 5:50 – 6:00 All
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§ libmsr (~2012) has been quite successful in the community
— Provided simpler monitor/control interfaces for 

translating bit fields into 64-bit MSRs
— But, was Intel specific

§ Interfaces, domains, latency, capabilities
— But, may also vary across generations within      

the same vendor

§ Our goals:
— Target 95% of users (friendly APIs)
— More devices 

• i.e., CPUs, Accelerators, IPMI, PCIe (CSRs, MMIO)
— More platforms 

• i.e., Intel Skylake, IBM P9, NVIDIA Volta, AMD Epyc, ARM
— More hardware knobs and controls

Power management capabilities differ across vendors

Intel AMD NVIDIA ARM

Power Energy FreqIns Ret

IBM HW

Feat

Variorum
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Variorum:
Vendor-neutral user space library for hardware control knobs
§ Platform-agnostic simple front-facing APIs

§ Security layer provided to ensure safe, 
reliable operation

§ Batching interfaces minimizing overheads 
of reading/writing many MSRs

§ Production version of libmsr, which 
targeted Intel architectures

§ C-based library

§ Function pointers to specific                                                                                                
implementation for target architecture

Intel
RAPL

IBM
OPAL

IBM+NVIDIA
Power Shifting Ratio

ARM
DVFS

NVIDIA
NVML

AMD
APM

Variorum

Safe	Models

Variorum
Interfaces

MSRs
(CPU)

CSRs
(Uncore)

IPMI
(System)

Infiniband
(Network) Accelerator

msr-safe
csr-safe
ipmi-safe

…

get_power
set_power

get_frequency
get_temperature
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Variorum v0.1.0 Release

§ Released Nov 11, 2019!
— https://github.com/llnl/variorum

§ Resources
— Spack package for installation

• under review

— readthedocs webpages
• https://variorum.readthedocs.io/

§ License: Permissive (BSD-3)

§ Current support for Intel Skylake (and older) 
and IBM Power9

§ On the immediate roadmap: NVIDIA+IBM, 
ARM, AMD, advanced user APIs

https://github.com/llnl/variorum
https://variorum.readthedocs.io/
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Variorum APIs / Examples (Subset)

§ int
dump_thermals(void)

§ int 
dump_power(void)

§ int 
dump_power_limits(void)

§ int 
print_available_frequencies(void)

§ int     

set_power_limits(val)

§ int
disable_turbo(void)

§ If Intel:
— Read energy status 

registers

§ If IBM:
— Collect values from 

OPAL filesystem

§ If NVIDIA:
— Use NVML APIs
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Demo of variorum




